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Motivation

Poorly-written queries are a major problem in the industry.

Query rewriting transforms a query into another that is

semantically equivalent but faster.

Current query rewriting solutions usually rely on rewrite rules.

However, it is impossible to enumerate every slow query pattern

and design a rewrite rule for each of them.

If there is a slow query pattern not covered by existing rules, how

can we optimize it?

Let us look at two queries both written by real LeetCode users for

calculating running total.

Q2 is much faster than Q1.

People who wrote Q1 may not realize Q1 is very inefficient.

People who wrote Q2 may not understand why someone would

write a query like Q1.

It’s hard to design a rule rewriting Q1 to Q2 before you see Q1.

Key Contributions

Propose the first synthesis-based query rewriting technique

capable of whole-query optimization without requiring

predefined rewrite rules.

Define dataflows for SQL queries and exploit them for efficient

query synthesis.

Contribute a new benchmark by curating more than 1000

real-life queries from LeetCode participants.

Approach

Dataflows capture how data is computed and used

Equivalent queries often shares dataflows

Derive query cost using dataflows

Given a input query Q, for any query component C in search space,

cost(C) = # of dataflows in C but not in Q

Search queries in ascending order based on cost

Evaluation

Fourworkloads: LeetCode user submissions, Calcite rule testing pairs,

TPC-H, TPC-DS

Two baselines: WeTune1, LearnedRewrite2

Optimization Coverage: SlabCity can optimize more queries.

Latency Reduction: SlabCity can find faster queries.
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