
SlabCity: Whole-Query
Optimization using Program

Synthesis
Rui Dong*, Jie Liu*, Yuxuan Zhu, Cong Yan, Barzan Mozafari, XinyuWang

University of Michigan & Microsoft Research

Workflow of SlabCity

Query
Synthesizer

Input
Query

Equivalence
Checker

Candidate
Query

Counterexample
DB

Performance
Ranker

Faster &
Equivalent

Query

Integrity
Constraint

DBMS

1

Example DB & Query Pair

Pair of Query Outputs

Query Outputs

Query & Counterexample DBs

Equivalent
Queries

Queries and DB

Actual or Estimated Costs

2

3

S���C���

ABST

P 4(1
XX

Motivation

Poorly-written queries are a major problem in the industry.

Query rewriting transforms a query into another that is

semantically equivalent but faster.

Current query rewriting solutions usually rely on rewrite rules.

However, it is impossible to enumerate every slow query pattern

and design a rewrite rule for each of them.

If there is a slow query pattern not covered by existing rules, how

can we optimize it?

Let us look at two queries both written by real LeetCode users for

calculating running total.

Q2 is much faster than Q1.

People who wrote Q1 may not realize Q1 is very inefficient.

People who wrote Q2 may not understand why someone would

write a query like Q1.

It’s hard to design a rule rewriting Q1 to Q2 before you see Q1.

Key Contributions

Propose the first synthesis-based query rewriting technique

capable of whole-query optimization without requiring

predefined rewrite rules.

Define dataflows for SQL queries and exploit them for efficient

query synthesis.

Contribute a new benchmark by curating more than 1000

real-life queries from LeetCode participants.

Approach

Dataflows capture how data is computed and used

Equivalent queries often shares dataflows

Derive query cost using dataflows

Given a input query Q, for any query component C in search space,

cost(C) = # of dataflows in C but not in Q

Search queries in ascending order based on cost

Evaluation

Fourworkloads: LeetCode user submissions, Calcite rule testing pairs,

TPC-H, TPC-DS

Two baselines: WeTune1, LearnedRewrite2

Optimization Coverage: SlabCity can optimize more queries.

Latency Reduction: SlabCity can find faster queries.

Acknowledgements

We thank Lin Ma, and the anonymous reviewers for the helpful feed-

back. This work was supported by the National Science Foundation

under Grant No. CCF-2210832

References

[1] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding, Chuzhe Tang,

Haibo Chen, and Jinyang Li.

Wetune: Automatic discovery and verification of query rewrite rules.

In Proceedings of the 2022 International Conference on Management of Data, pages 94–107, 2022.

[2] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng.

A learned query rewrite system using monte carlo tree search.

Proceedings of the VLDB Endowment, 15(1):46–58, 2021.

SlabCity Poster Session VLDB 2023

