
DiLogics: Creating Web Automation Programs With Diverse
Logics

Kevin Pu
jpu@dgp.toronto.edu
University of Toronto

Jim Yang
jima.yang@mail.utoronto.ca

University of Toronto

Angel Yuan
angel.yuan@mail.utoronto.ca

University of Toronto

Minyi Ma
minyi.ma@mail.utoronto.ca

University of Toronto

Rui Dong
ruidong@umich.edu

University of Michigan

Xinyu Wang
xwangsd@umich.edu
University of Michigan

Yan Chen
ych@vt.edu
Virginia Tech

Tovi Grossman
tovi@dgp.toronto.edu
University of Toronto

Demonstration

Automation

DiLogics

…

Upload

a

b

e

f

g

h

d

c

i

a

b

c

d

e
f

Figure 1: The workflow of DiLogics. (Step 1) To create web automation programs for data entry tasks, users first upload an input
file, which is semantically segmented into the steps representing different task specifications a○. Users can edit inaccurately
segmented steps b○. (Step 2) Users then follow a carousel of current steps c○ and demonstrate the corresponding UI actions to
fulfill each specification. DiLogics highlights semantically relevant web page elements, guiding users to perform demonstrations
d○. (Step 3) After two iterations of demonstrations, DiLogics learns the mappings between different steps and actions and
automates the remaining task steps, generalizing GUI actions based on the specification’s semantic meaning. Users can refine
the program logics e○ at any stage of execution by editing the steps or adding new demonstrations f○.

ABSTRACT
Knowledge workers frequently encounter repetitive web data entry
tasks, like updating records or placing orders. Web automation in-
creases productivity, but translating tasks to web actions accurately
and extending to new specifications is challenging. Existing tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0132-0/23/10. . . $15.00
https://doi.org/10.1145/3586183.3606822

can automate tasks that perform the same logical trace of UI ac-
tions (e.g., input text in each field in order), but do not support tasks
requiring different executions based on varied input conditions. We
present DiLogics, a programming-by-demonstration system that uti-
lizes NLP to assist users in creating web automation programs that
handle diverse specifications. DiLogics first semantically segments
input data to structured task steps. By recording user demonstra-
tions for each step, DiLogics generalizes the web macros to novel
but semantically similar task requirements. Our evaluation showed
that non-experts can effectively use DiLogics to create automation
programs that fulfill diverse input instructions. DiLogics provides
an efficient, intuitive, and expressive method for developing web
automation programs satisfying diverse specifications.

ar
X

iv
:2

30
8.

05
82

8v
2

 [
cs

.H
C

]
 1

8
A

ug
 2

02
3

https://doi.org/10.1145/3586183.3606822

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

KEYWORDS
Web automation, PBD, neurosymbolic programming

ACM Reference Format:
Kevin Pu, Jim Yang, Angel Yuan, Minyi Ma, Rui Dong, Xinyu Wang, Yan
Chen, and Tovi Grossman. 2023. DiLogics: Creating Web Automation Pro-
grams With Diverse Logics. In The 36th Annual ACM Symposium on User
Interface Software and Technology (UIST ’23), October 29-November 1, 2023,
San Francisco, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3586183.3606822

1 INTRODUCTION
Interacting with web pages to complete routine data entry and mi-
gration tasks is a daily part of many occupations, from receptionists
to researchers. But these tasks often require repetitive work that
can be time-consuming and unfulfilling. Frequently performing
these tasks manually can result in human mistakes (e.g., duplicate
or missed entries) or frustration [32]. In contrast to the manual ef-
fort, web automation uses programs to simulate human interaction,
creating a faster and more accurate way to complete mundane tasks.
But there is a barrier to creating web automation programs for users
without expertise. Through a formative analysis of web automa-
tion requests in online platforms such as StackOverflow, we found
that non-experts are experiencing difficulty in creating automation
programs tailored to their need. To lower the barriers in the pro-
gram creation process, existing programming-by-demonstration
(PBD) systems, such as SemanticOn and Rousillon [17, 20, 53, 56]
allow users to manually perform a part of the task and construct
an automation program based on the demonstrations.

However, while these tools can handle structured repetitive tasks
that follow predetermined, uniform program logic, they are difficult
to generalize when the task contains varied input data that require
different page actions to fulfill. Consider the scenario where an
event planner handles employee information from a spreadsheet
for booking. They want to enter employee ID into a web form for
every colleague traveling to a conference. While the data entry
step is constant for every employee, inputting ID to the same field
(i.e. uniform program logic), the subsequent steps could require
different actions targeting different UI elements. For example, the
planner may also need to enter information about dietary restric-
tions, seating preferences, and planned attendance into multiple
data systems and make different selections for every employee (i.e.
diverse program logic based on input). Another illustrative example
is when a coordinator is placing a group lunch order for a social
gathering. On the food ordering website, they need to conduct
repetitive steps to search for the restaurant, click on the food item,
and add it to cart. Existing tools can automate this uniform logic
based on the website structure (e.g. adding each item in the order
they appear), but cannot accommodate when requests don’t follow
such structural order. For example, two requests might order from
different restaurants where items are organized differently, and one
request requires side dish options while the other notes a dietary
restriction. These diverse specifications would likely require the
automation program to interact with distinct UI elements in dif-
ferent sequences, leading to a need for the program to execute a
diverse set of logics depending on the input data. But the presence
and content of these different types of requests might differ for

each input. Every local specification (e.g. specify attendance on
an event page) might require near identical automation steps, but
holistically the different requests are combined and scaled with
increasing size of input data to create a hard problem, demanding
system intelligence to disambiguate different requests and perform
the actions accordingly. This necessitates the program to be flexible
in its choice of execution in order to automate a large variety of
steps based on the input data. To add to the problem, the input data,
which describes task requirements, contains enormous heterogene-
ity in expression (e.g. multiple steps, different phrasing). A study
on user commands for web actions revealed that people employ
various language phenomena, often involving high-level goal de-
scription or reasoning [52]. While the user could include additional
program logic in their automation script to account for diversity
in input data and website UI, this extra configuration process can
become laborious and error-prone. The resulting program is also
task-specific, needs to be maintained, and not scalable.

In this work, we present DiLogics1, a PBD system built upon
a program synthesizer [20] that assists non-experts in creating
web automation programs with diverse and generalizable program-
ming logics. The completed program can execute consistent actions
for every data input; it also goes beyond symbolic inferences and
dynamically executes different UI actions based on the semantic
understanding of the task input and web content. To create a scal-
able automation program, DiLogics first semantically segments
the input data to decompose the task into more tractable steps
(Step 1, Fig.1). The system represents these steps in a table with
a carousel widget (Fig.1.c) that informs users of the task progress.
Then DiLogics elicits web demonstration for each step (Step 2,
Fig.1), mapping the sequence of UI actions to the description of
the step. At every step, DiLogics leverages natural language pro-
cessing (NLP) models to scrape web content and locate the most
relevant web page content via statistical learning. This way, UI
actions (e.g., clicks and selections) are dynamically associated with
semantically similar elements on the page. In addition, DiLogics
employs program synthesis techniques to record the user’s actions
and their symbolic relationships in the web DOM structure. After a
few demonstrations, the system detects the pattern in the action
trace and generates an automation program.

As the user demonstrates each step, DiLogics builds a catalog
of task steps to UI sequence mappings. Upon entering automation,
the system matches each encountered task step to the semantically
similar step in the demonstrated catalog and extends the same
program logic to fulfill the current condition. When the new step
is not meaningfully similar to any previous ones, DiLogics asks the
user to demonstrate a new set of UI actions, and adds this step to
the catalog for future generalization (Step 3, Fig.1). This approach
enables flexibility in the execution of the automation program,
as it will always employ the most fitting program logic based on
semantic similarity, and perform the actions on the relevant element
on the current page. Combining NLP models and program synthesis
techniques, DiLogics can generate an automation program that
consists of both rule-based structural repetitions, as well as diverse
program logics based on the different input data semantics.

1DiLogics is an acronym for Diverse Logics

https://doi.org/10.1145/3586183.3606822
https://doi.org/10.1145/3586183.3606822

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

We evaluate DiLogics’s usability with 10 participants using four
common UI automation data entry tasks. All participants had no
prior experience using web automation tools. We showed that users
of DiLogics can successfully create automation programs that sat-
isfy the input requests for every task. Despite being novices, par-
ticipants were able to efficiently construct diverse programming
logics by demonstrating different semantic steps. Participants also
reported that unlike performing manual actions such as copy-and-
paste in data entry tasks, mappings task steps to a set of UI actions
via demonstration is efficient, generalizable, and reduces mental
effort. Overall, they found DiLogics intuitive to use and effectively
covers diverse scenarios by learning the user demonstrations. In
the final section, we discuss the implications of DiLogics’ design
and future works that can adapt our approach to other interactive
collaborations between the human and the intelligent system.

This paper contributes the following:
• A PBD approach that assists users in creating web automa-
tion programs with diverse programming logics.

• The technique of semantically categorizing input data and
mapping to generalizable UI demonstrations.

• The DiLogics system implementation and user evaluation
results assess its effectiveness and usability.

2 RELATEDWORK
Our work relates to primarily two fields in the PL and HCI com-
munities: web automation and human-AI collaboration. In this
section, we identify gaps in existing solutions and draw our design
inspirations from these two areas.

2.1 Web Automation
The concept of web automation refers to the use of bots to perform
tedious and recurring web tasks such as data entry and extraction
by simulating human interactions. It is common for knowledge
workers to use web automation in order to accomplish their re-
spective tasks [30, 33, 41, 58]. For example, data entry workers may
need to automate entering data into a digital system for routine
tasks such as processing orders or extracting data.

Many tools have been developed to help users to create automa-
tion programs. For instance, tools like Puppeteer, Selenium, Scrapy,
and Beautiful Soup allow developers to select elements and define
actions to automate. Research tools like Sikuli [64] allow users to
identify a GUI element (e.g., an icon or a toolbar button) by taking
its screenshot. Using computer vision techniques, it analyzes pat-
terns in the screenshots to locate the appropriate elements when
automating GUI interactions. Although these tools help lower the
effort of creating programs, they all require programming knowl-
edge and cannot disambiguate similar elements or text information.

Even for professional developers, creating automation programs
is a non-trivial task. A study showed that experienced programmers
have difficulty writing web macros using common web automation
frameworks [24]. Participants pointed out that a primary hurdle
was the labor of checking syntactical element selectors to create
their programs, causing inefficiency and errors. In addition, the
program might not generalize to cross-webpage selections where
the elements don’t have syntactic similarities. With our work, users
can specify the mappings between a task and its corresponding UI

actions via demonstrations. This saves effort on checking selectors
to create a program and enables generalization of UI actions for
unseen steps beyond structural similarity.

Alternatively, researchers have leveraged large datasets of UI to
computationally summarize a mobile screen into a coherent natural
language phrase [62], enabling conversational interaction using
large-language-models (LLMs) [61], and to ground instructions to
UI action sequences [38]. Commercial LLM applications also em-
ploy fine-tuned neural models for downstream activity such as UI
automation [1, 11]. These tools allow users to prompt the model
with high-level natural language intents, which are translated into
GUI actions. However, users have limited control outside of de-
scribing the task using prompts, and cannot modify the output
automation program easily. DiLogics provides a complete pipeline
of web automation workflow, from processing input data, to tailor-
ing the program to user demonstration, to refining and handling
errors in automation.

2.2 Specifying Diverse Programming Logics
Prior works developed techniques that support users to easily ex-
press program logics to satisfy task specifications. Systems like
SemanticOn and PUMICE allow users to specify conditions by
demonstrating examples that are (dis)similar to a given specifica-
tion (e.g., images of two people interacting, weather is hot) [37, 53].
However, they are designed to handle uniform logic – a binary
conditional that determines action or no action applied universally
to all content and input. Examples include downloading an im-
age when it contains key objects, or running a macro when the
weather is above a certain temperature. In this case, users need to
recreate a program when there are multiple specifications that cor-
respond to different UI actions. Commercial tools like UiPath [12]
and iMacros [4] allow users to set conditional actions on specific
page elements via programming, which requires expertise. But, they
also lack task understanding to generalize the conditional outside
of the symbolic element (i.e. HTML tag) and could not execute
different actions based on input data specifications.

Alternatively, researchers designed neurosymbolic languages
with both neural and symbolic elements to create programs that
satisfy new specifications via approximation. Neurosymbolic pro-
gramming is a generalization of classical program synthesis, bridg-
ing the gap between deep learning and program synthesis. Unlike
deep learning, neurosymbolic programs can often represent long-
horizon, procedural tasks that are difficult to execute using deep net-
works, and they are also generally easier to interpret and formalize
than neural networks [18, 51]. In contrast to symbolic approaches,
neurosymbolic programming does not require all specifications to
be hard logical constraints.

However, this approach has been little explored in the context of
web automation. For many years, ML researchers have promoted
a “hybrid model” that combines the best of both worlds. As an
example, WebQA developed a neurosymbolic system with domain-
specific language (DSL) for extracting desired information from
datasets that have similar contents but differ in the underlying
structures (e.g. DOM structures) [18]. It omitted, however, user
actions during upstream activities (e.g., data collection), limiting
it to tasks involving a particular dataset (e.g., data extraction). For

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

data collection, SemanticOn was able to bridge the communication
gap between users’ abstract level intent (semantic conditions) and
a symbolic system using neural components without defining a
DSL [53]. However, while these systems are capable of conditional
behavior, their program logic is limited to binary decisions between
action and no action, unable to handle diverse specifications with
different corresponding actions. Therefore, current neurosymbolic
approaches are either restricted to uniform program logic tasks or
require the development of a domain-specific language (DSL) to
encode neural model output into symbolic systems (or vice versa),
making these approaches not scalable.

DiLogics also employs a neurosymbolic approach for creating
programs to automate data entry tasks that involve diverse logics.
Rather than following the same program logic throughout execu-
tion, DiLogics learns from user demonstration and uses statistical
learning to automate the current step using the most fitting pro-
gram logic based on task semantics. By categorizing users’ actions
into semantic steps, DiLogics learns action patterns and logic-to-
demonstration associations using both symbolic inferences and neu-
ral network approximation. The resulting programs extend beyond
the uniform program logic that cannot satisfy diverse specifications
due to task nature. Through this construct, DiLogics reduces the
level of expertise needed by system designers in other areas to build
neurosymbolic programming approaches for their tasks.

2.3 Programming by Demonstration
Aprogramming by demonstration (PBD) approach has been adopted
by many tools in order to further reduce the expertise required,
since users only have to interact with the target applications rather
than write code [15, 19, 26, 28, 42]. Among these application do-
mains are text manipulation [16, 29, 44, 47, 63], image or video
editing [27, 39, 43], and GUI synthesis [45, 46, 48, 60]. For web ap-
plications, PBD helps build automation programs without requiring
users to understand browser internals or reverse-engineer target
pages manually. CoScripter [32], Vegemite [40], Rousillon [17],
UiPath [12], and iMacros [4] are examples of the PBD approach to
web automation. The resulting programs from user demonstration
are represented in visual formats such as a workflow chart [12],
a for-loop [17], or in DSL code [4]. These representations require
programming expertise, and users have to manually edit program
logic which is often nested and convoluted.

Effectively communicating user intent is a major challenge in
these PBD systems, and many systems have proposed bridging
the gap between user intent and system understanding. Systems
like PLOW [14] and PUMICE [37] allow users to express concepts
(e.g., hot weather) in natural language and then learn the concepts
to generalize the automation. ParamMacros [25] allows users to
first generalize a concrete natural language question with potential
values to identified parameters, and then create a demonstration of
how to answer the question on the website of interest. Scout [59],
Designscape [50], and Iconate [65] allow users to iteratively refine
their intent by directly manipulating the AI-generated artifacts.
SOVITE [34] allows users to correct system misunderstanding via
direct manipulation of the highlighted entity on the GUI. Another
work, APPINITE [35], also encapsulates the user’s intent in natural

language instructions and clarifies the intention in a back-and-forth
conversation with the AI.

Despite promises, specifying intents to cover every case can be
tedious. Furthermore, users may not know all the cases in the first
place. This suggests that tools need to elicit users to better formu-
late their intent before creating automation programs. DiLogics
addresses this challenge by parsing input data and allowing users to
refine their intent continuously during automation by coordinating
with our system.

a

b

c

d

Figure 2: A screenshot of the WebRobot system UI.

3 BACKGROUND: WEBROBOT SYSTEM
In this section, we provide necessary information forWebRobot [20],
a program synthesizer that constructs a part of the DiLogics system.
WebRobot utilizes only web actions and requires no programming
expertise, which is consistent with our design goals.

WebRobot utilizes a no-code approach to synthesize web au-
tomation programs based on user demonstration. To create a web
automation program for a data entry or scraping task, the user
first starts recording their actions (Fig. 2.a) and optionally uploads
a JSON file (Fig. 2.b) if they need to input data. Then, they start
demonstrating how to perform the task by choosing an appropriate
action type (e.g., Scrape text) in the action panel (Fig. 2.c) followed
by actually performing actions (e.g., clicking the desired text data
on the website). After each scraping action, the output panel dis-
plays the extracted data (Fig. 2.d). Behind the scenes, WebRobot
records every user action with its associated action type. At a very
high level, WebRobot infers the user intent by generalizing a trace
𝐴 of user-demonstrated actions to a program 𝑃 with loops. This
generalization is done by “rerolling” actions in 𝐴 into loops in 𝑃

– specifically, it infers inner loops first and gradually infers outer
loops. In particular, 𝑃 is guaranteed to not only reproduce the ac-
tions in 𝐴 but also generalize beyond 𝐴. In other words, 𝑃 performs
more actions after 𝐴. This typically means 𝑃 is a loopy program
which “folds” actions from 𝐴 into a loop that can execute for multi-
ple iterations, essentially generalizing user-demonstrated actions
based on the same program logic. Finally, WebRobot executes 𝑃 to

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

automate the rest of the task, without users manually performing
any actions. For more details on the program synthesis algorithm,
please refer to the original WebRobot paper [20].

4 FORMATIVE STUDY AND DESIGN GOALS
4.1 Online Web Automation Requests
To understand the needs and barriers of web automation users,
we conducted a formative study analyzing online web automa-
tion requests and derive our design goals from the results. We
collected posts from developer forums like StackOverflow and sub-
Reddit communities (e.g. r/automate), as well as commercial tool
platforms like UiPath and iMacros forums [7, 13]. We used Beauti-
fulSoup4 [2] and the available APIs [9] to scrape the title, content,
comments/replies, and the URL of web posts. To identify relevant
posts and discussions about web automation, we filtered the fo-
rums by keywords like “UI automation”, “workflow automation”, and
“web-scraping” and ranked the results by popularity.

After data cleaning, we collected a total of 847 posts. We con-
ducted keyword analysis within post content and identified 53% of
posts as being written by non-experts without web automation or
programming expertise, containing phrases like “new to [specific
tool]” or “beginner”. We also found that 61% of posts were inquiries
about how to perform a specific function or approach a task using
existing tools. This indicates a potential barrier to usage in existing
tools as they require specific domain knowledge and experience to
utilize. Combined with a large number of non-expert requests, the
learning curve for beginners to accomplish their automation tasks
is challenging to overcome.

Our analysis also discovered examples of posts that illustrate
conditional specifications. One example is when a user wanted the
automation script to iterate through a list of users on a website,
and conduct different actions depending on whether the user status
is online [3]. In another example, the user intended to automate
different UI actions based on a text element value [6]. Although
the element can be easily located by the human, the user expressed
difficulty in pragmatically accomplishing this behavior. In addition,
we found that some users desire a simpler way to create and refine
web automation programs. For example, one user expressed a need
to record web macros and modify them to automate web actions
that are generalizable [8].

Based on the results of our formative analysis, we identified a
barrier for novice users to create web automation programs tailored
to their needs. Existing tools require domain knowledge, and cannot
fully satisfy conditional automation or generalize the web actions
based on the page content. We also argue that current online re-
quests are limited by the capabilities of existing tools. With higher
system intelligence, users could express the need to create more
generalizable web automation programs for more complicated tasks
that involve conditional steps.

4.2 Website UI and Content Analysis
We also carried out an informal analysis to identify the common
UI action sequences for completing common data entry tasks on
websites. To do so, we analyzed 40 popular websites across 7 genres,
including food, shopping, health, entertainment, travel, communica-
tion, and scheduling. These genres are identified by prior study [57]

and extracted from real user requests on forums such as iMacros [5]
and Stack Overflow [10] that discuss the creation of web automation
programs for data entry tasks. We scraped the UI widget types and
analyzed the types of UI action sequences needed to complete tasks
for these websites. This led us to identify 8 recurring widget cate-
gories: buttons with text (appeared in 100.0% of inspected websites),
drop-down menus (77.5%), checkbox/radio buttons beside a text
label (72.5%), input box for memo or special instructions (27.5%),
calendar widget (20.0%), plus and minus quantity widget (20.0%),
and seat map (10.0%). This investigation helped us determine which
are the most common UI widgets that an automation program could
encounter. We also found that websites utilize consistent GUI ele-
ments and interactions for the same categories of functionalities
across all pages (e.g. navigation is often associated with buttons or
links, search is often associated with an input box). Thus, we design
DiLogics to automate GUI tasks under the same web domain where
similar UI interactions fulfill the same semantic task. This design
scopes the system generalization and assumes that a semantically
similar task can be automated via the same UI actions, enhancing
the accuracy within the task website domain.

4.3 Design goals
Based on our formative analyses and prior works, we devised three
design goals to help construct our system supporting users in cre-
ating web automation programs for data entry tasks with diverse
program logics.

• DG1: Generalizable specification of the diverse mapping
between task steps and user actions.

• DG2: Intuitive and natural interaction that constructs au-
tomation from demonstration

• DG3: Error-handling capability to modify automation and
refine step-action mappings accessibly.

5 DILOGICS
5.1 The DiLogics User Experience
Emma, a corporation clerk, is responsible for processing food orders
for all employees at a team-building event. A spreadsheet of every-
one’s food orders and requests is collected through a survey. Emma
could manually enter the selections for each order, but that would
be time-consuming and error-prone. Instead, Emma uses DiLogics
to efficiently demonstrate common categories of task steps, record
her web UI actions, and synthesize an automation program that
automatically completes the task for her. To begin, Emma opens the
DiLogics browser extension and uploads the data sheet, displayed
as a table with segmented steps for restaurant, dish, ingredient, and
dietary restrictions (Fig.3.a).
5.1.1 Manual Demonstration. Emma begins the PBD process and
moves her attention to the carousel widget on the target web page
(Fig.3.b), displaying the steps to complete the current food order (i.e.
data table row). Emma follows the carousel and first searches the
restaurant by inputting the name into the search bar and clicking
“Search” (Fig.3.c). Then, Emma moves to the next carousel step,
which is to select the dish. DiLogics semantically searches the
relevant text content on the page. Emma follows the highlight
and finds the best fitting dish, then she clicks to navigate to the

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

col1:
Restaurant

col2:
Dish

col3:
Memo

Eggsmart Mediterranean Omelette i'm lactose intolerance
Boba medium coke medium size
...

1
2
3
4
5
6
7

1 foreach r in table do:
2 web_search col1[i]
3 semantic_earch col2[i]
4 foreach m in col3[i] do:
5 execute col3[i]_actions

up

a

d

ec

b

Figure 3: An example workflow of DiLogics’ user demonstration. Upon uploading the input file a○, the carousel widget displays
all task steps for the current row b○. To demonstrate, the user first drags the restaurant name to the search bar and navigates to
the intended page c○. Then, the user moves the carousel to the next slide. DiLogics semantically searches for the dish name
and the user clicks on the highlighted result to enter the detail page d○. On this page, the user demonstrates each remaining
specification. The first request is adding soup as a side item. DiLogics initially does not find any relevant option, so the user
demonstrates by first clicking on the drop-down menu for sides. The system then highlights the relevant option, and the user
clicks on the corresponding radio button. The user then moves on to the next specification until the end of the data row.

food details page (Fig.3.d). So far, the demonstrated actions are
consistent for every food order, which can be handled by existing
PBD tools. But they are limited when every order contains different
specifications that require different program logics to fulfill, as we
see in later steps.

Again advancing the carousel, the current step is a segmented
user request to order “a side of soup”, however, no highlight is shown
as the side item menu is not expanded. Emma opens the drop-down
menu, DiLogics detects a page state change, and highlights the
“Soup” menu item (Fig.3.e). This sequence of three actions (open
menu, search, and click) should not be executed for orders that
don’t include a side, but existing PDB tools will require configur-
ing a conditional on the symbolic element (i.e. page contains an
HTML element with tag “Side”) to handle this case. Instead, DiLog-
ics dynamically apply the best fitting program logic by storing this
action trace under the category of “a side of soup“ for generalization.
Emma keeps demonstrating each task step following the carousel
progression, until arriving at the last slide, which prompts her to
complete any remaining action in this row. Emma clicks “Add To
Order“ to complete this order request and clicks “Next Row“ on the
carousel. DiLogics then generates the carousel steps for the next
input data row (Fig.4.e).

5.1.2 Semi-automation. After Emma demonstrated the second row
following the carousel, DiLogics synthesizes an automation pro-
gram based on user action pattern and enters the semi-automation
mode. In this stage, the system predicts the next step of action
(e.g. “Next step is clicking on the highlighted element”) and prompts
the user to review on the carousel widget. Emma can click “Con-
firm“ to allow DiLogics to automate this step, or click “Cancel” for
incorrect predictions and manually demonstrate the correct step.
After Emma authorizes the system predictions to fulfill the third-
row order, DiLogics enters full automation with the synthesized
program.

5.1.3 Full Automation. In full automation mode, DiLogics com-
pletes the remaining orders row-by-row in the input table, and
step-by-step in each row’s table cells. DiLogics automates actions
that are consistent for every order, such as inputting the restaurant
name for search or clicking “Add to Order”. Moreover, DiLogics con-
structs different program logics to handle different combinations of
task steps and generalize to new steps. Emma is pleased to find that
DiLogics is able to correctly perform UI actions for “add a daily
soup” even though it is a new condition on a different restaurant
page. DiLogics achieves this by semantically matching the step to
“a side of soup”, which was previously demonstrated. It can then
perform the same UI action sequence but on the “daily soup” option
on the current web page, despite structural differences.

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

a

b

c

d

e

f

g

h

b

a

c

d

e

f

Figure 4: DiLogics UI Overview. Left is DiLogics’ extension window. After users upload an input file a○, the data is semantically
segmented into task steps b○ and rendered into a table. Users can modify the inaccurately segmented step c○. They can also
control the flow of the task, and pause automation d○. Right is the target website, with an overlaid carousel displaying the
progress of the current data row e○. Steps that have been completed are marked green on the data table and carousel, and the
current step is marked yellow. Users follow the carousel to start the task demonstration. DiLogics semantically searches web
page and highlight the most relevant text. If the highlight is incorrect, users can cancel it f○, then edit the step c○ or navigate
the page to reveal relevant content (e.g. expand the drop-down menu). After demonstrating the current step, users can advance
to the next slide on the carousel. Users can click “Next Row” at the end to move on.

5.1.4 Refine & Repair. Occasionally, when DiLogics encounters a
new step that does not semantically match with any previous cate-
gories (e.g. “select barbeque sauce”), the system pauses and prompts
Emma to demonstrate. When DiLogics makes a mistake by high-
lighting or selecting the wrong element (e.g. highlight “Sauce” menu
heading before the user reveals sauce options in the drop-down),
Emma pauses the program tomanually cancel the highlight (Fig.4.f),
expand the menu, and record new demonstrations to account for
new conditions. This manual effort decreases as DiLogics learns and
expands its knowledge of the task semantics. Existing PBD tools
require users to program the automation for conditional behavior,
and could not continuously refine or repair as it executes. Using
DiLogics, Emma did not have to create any conditionals to config-
ure the automation program to handle each task step, DiLogics is
able to acquire task understanding and generalize demonstrations
based on the step specifications. Moreover, Emma has the ability
to refine program logic and repair errors at any point during the
workflow. Eventually, the program is able to efficiently execute UI
actions based on this large datasheet. Emma checks the order list
and the shopping cart to verify that the task has been completed,
and purchases to confirm the order.

5.2 DiLogics’ Design Rationale and Iteration
We iteratively designed the DiLogics system based on the feedback
from a 10-participant usability evaluation using the prototype. In
the initial iteration, DiLogics required users to interact with the
extension page to control the flow of demonstration recording, re-
sulting in frequent attention switches between the task website
and our tool. Users also needed to manually trigger a semantic
search in their action trace which was inefficient. To address these
issues, we made significant improvements to the user workflow
and interaction process. The final version of DiLogics features a
carousel widget (Fig.4.e) overlaid on the target website to guide the
task progression, displaying the past, present, and next task steps,
following Norman’s visibility principle [49]. The widget affords
and constrains movement back and forth, giving users a sense of di-
rection and task progress. In addition, by Horvitz’s mixed-initiative
UI principles [23], we anchor the carousel on the task web page to
alleviate effort and reduce context switches. In addition, DiLogics
now actively searches for semantically relevant page content at
every step and website state change, increasing system intelligence
to simplify user’s workflow. As the task goes on, the data table
provides color-coded highlighting to signal completion status. This
is guided by Norman’s feedback principle [49] to help users un-
derstand DiLogics’s response and confirm their actions. Moreover,

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

the semi-automation mode after demonstration and before full au-
tomation corresponds to Horvitz’s principle of minimizing the cost
of poor system guesses [23]. By walking through one iteration of
automation with the user, DiLogics narrows the gulf of evaluation
and allows users to validate system actions.

5.3 Design and Implementation
We implemented DiLogics as a Chrome browser extension, build-
ing upon the core program synthesis engine from WebRobot [20].
Primarily, it uses plain JavaScript for recording front-end inter-
actions on the web page. For task step categorization and semantic
similarity matching, we adopted two off-the-shelf machine learning
models: Sentence-BERT [55], a pre-trained network that derives se-
mantically meaningful sentence embeddings that can be compared
using cosine-similarity, and SpaCy [22], a trained natural language
processing pipeline. The system design and implementation can be
separated into three parts, detailed below.

5.3.1 Step 1: Data Input and Specification Parsing. To process the
input data into tractable steps representing different specifications,
users can first upload an JSON input file to DiLogics which ren-
ders a data table (Step 1 Fig.1.a, Fig.4.a,b). While currently only
supporting JSON, the input data can be easily extended to other
file formats such as CSV, Excel workbook, etc. The task file could
have inherent structures (i.e. columns and rows of information), but
DiLogics further parses the input texts and automatically segments
them into semantic steps using SpaCy [22]. The data row with the
highest number of identified steps will be ranked first. This is to
place most of the manual demonstration efforts at the start of the
task, allowing users to record actions for most semantic categories
upfront, reducing interruption in later automation. Users can in-
spect and edit the data if they find incorrectly parsed or ambiguous
steps at any point during the demonstration or in automation by
pausing the program (Fig.1.b, Fig.4.c).

The segmented task steps could also contain specifications that
are too abstract or too detailed, which might be misinterpreted
by the NLP model and fail to connect to web page content. For
example, a user might note that they are “lactose intolerant” in the
specification, but the web page only contains a “No cheese” option.
A semantic search of the original step using yields no match on the
page (Fig.5.a). The user can then manually rephrase this condition
by editing it to “remove dairy products” (Fig.5.b), which DiLogics
understands and highlights for demonstration (Fig.5.c). Throughout
the program creation process, users have the agency to repair and
refine task specifications with the help of DiLogics.

5.3.2 Step 2: Demonstrations and Mapping. To create an automa-
tion program, users start the web recording (Fig.4.d) and demon-
strate actions for each task step from the start of the task table.
DiLogics’ carousel widget organizes the current row’s steps into
ordered slides, guiding the users to interact with the website to
fulfill the current step as if completing the task manually (Fig.4.e).

Every web macro will be recorded and used to synthesize a re-
peatable program (e.g. a for-loop). The program synthesis engine
based onWebRobot [20] enables inferences based on input data and
website structures, such as sending each table cell data into a list of

input fields in order. However, it could not generalize the automa-
tion to perform different sequences of actions based on the step
specification and the page content. DiLogics extends WebRobot’s
functionality by incorporating semantic search in its automation
execution. After every user action, DiLogics scrapes the web page
and highlights the page element that is most semantically relevant
to the task step description, as determined by the cosine similarity
of the two text phrases [55] (e.g. step “remove dairy products” relates
to page option “no cheese”). This intelligent search feature alleviates
users’ mental effort to process page information. If the highlight is
accurate, users can continue to demonstrate (e.g. click the check
box on “no cheese”), or they can cancel the highlight (Fig.4.f) to
correct the system by editing the task step or guide the system
to highlight the desired region by revealing more relevant page
content (e.g. expand a menu to reveal more selections). DiLogics
records this entire sequence of UI actions and maps the task step
to the list of macros as a key-value pair.

As users demonstrate different steps, DiLogics constructs a cata-
log of step-to-UI action mappings. In later automation, to perform
each task step, DiLogics first inspects the catalog to find the most
similar demonstrated step via semantic matching (e.g. new step
“no meat” is similar to “remove dairy products” in meaning). Then
DiLogics generalizes the stored UI action sequence to the current
step and automates based on the current highlighted content (e.g.
highlight “No chicken” and click the checkbox next to the option).
Note that since DiLogics constantly searches for and locates the
most semantically similar element, the automation can execute
macros on the correct UI regardless of website DOM structure, go-
ing beyond structural inferences and layout constraints of the task
website. By recording mappings between diverse specifications and
UI actions DiLogics constructs automation programs with malleable
programming logic by inserting the proper UI actions for each step
in real time to fulfill diverse task specifications.

5.3.3 Step 3: Automation, Refinement, and Error-handling. Users
follow the progression of the carousel widget to record the man-
ual demonstration for each step in a data table row, which counts
as one iteration of the task (e.g. completing one person’s food
order). After demonstrating for two iterations (i.e. two rows), Di-
Logics detects the repetitive pattern in the user action trace and
generates an automation program [20]. The system then enters
a semi-automation stage for the third iteration, where it prompts
users with the predicted action for the current step. Users can either
confirm to authorize the automation of this step, or cancel in case
of incorrect prediction and redo the demonstration for this step.
After confirming the synthesized program’s predicted actions in
the third row, DiLogics enters full automation.

During full automation, DiLogics iterates the remaining rows of
input data and perform corresponding actions based on generaliza-
tion from the previous demonstration. The carousel advances with
the progress of the automation, and each data table cell is marked
green when that step is executed. When encountering novel cases
that do not match with any steps in the catalog (Fig.5.a), DiLogics
pauses the automation and elicits a demonstration to fulfill the new
specification. After users demonstrate, the system appends a new
step-to-macros mapping to the catalog. Through this process, the

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

No semantic match

a b c

“No Cheese” is matched

Figure 5: Editing data table and specifying step. During step demonstrations, users might find that a request does not result in
any semantic match on the web page content a○. This could be due to incorrect parsing, ambiguity, too high or too low a level
of specificity, or limitation of the NLP model. The user can manually edit the itemized step to match the page content more
closely b○, and demonstrate the UI actions for this new category of step c○.

automation is refined with added categories of demonstration, and
the system enhances its capability to handle diverse specifications.

In the event of a system error during automation (e.g. highlights
the wrong element or executes wrong macros), users can pause the
program (Fig.4.d) to manually inspect and fix the error. They can
also edit the data table cell if the step specification is vague (Fig.4.c),
or re-record the incorrectly executed step with new demonstrations.
DiLogics provides different error-handling techniques to address
input data misinterpretations and system logic errors. Users can
gradually transition frommanual demonstrations, to evaluating sys-
tem predictions, and finally to full automation, but always preserve
the control to refine and repair the program at every stage.

6 SYSTEM EVALUATION
In order to evaluate DiLogics’s general usability in assisting users
with diverse program logic data entry tasks across different domains
and websites, we conducted an in-person user study. We used the
usage evaluation strategy in the HCI toolkit to guide our study [31].
The study recruited 10 undergraduate students (6F4M, average
age 21.1 y.o., average coding experience 2.3 years, denoted P1-P10)
from a large public university. None of the participants had prior
experience with web automation tools.

Since we are implementing a new PBD approach, a within-
subject experiment would be difficult as there is no clear baseline
to compare to DiLogics in solving automation tasks with diverse
specifications. However, our study reveals findings on the system’s
usability, coordination with AI, and error-handling in continuous
programs, all of which can provide insights into future system
designs.

6.1 Study Design
Upon signing the consent form, each participant first watched a
tutorial video of DiLogics’s interface and features. Then partici-
pants performed four different task scenarios using DiLogics. For
each task, an input file and a task description were provided. Each
input file contains 10 rows of different requests, and each request

requires multiple steps with diverse program logics that need to be
accounted for by the participants. Additionally, the specifications
were intentionally designed to have varying levels of abstraction
and ambiguity. This helps examine DiLogics’s refinement features
for handling unseen request steps. The participants could call for the
experimenter’s assistance at any time during the session. After the
participants completed the tasks, we conducted a short interview
with them regarding their experience. Additionally, participants
filled out an exit survey with Likert-scale and short-answer ques-
tions on system effectiveness, usability, and mental effort [21]. Each
participant was compensated $25 for their time. Each session took
60 minutes and was conducted in person on our machine. All ses-
sions were screen- and audio-recorded. Our study is approved by
the ethics review board at our organization.

6.2 Tasks
To design realistic tasks for users with limited experience with
automation tools, we take inspiration from prior studies on common
categories of web tasks, UI interactions to accomplish those tasks,
and natural language commands to describe the tasks.

Based on QAWob [57], a benchmarking study that collected more
than 500 website templates and sequences of GUI actions via crowd-
sourcing, we designed our tasks to require common UI interactions
such as search, text entry, drop-down, and click.We also determined
our task domains from the common website template categories,
such as dining, entertainment, and shopping [57]. Then we con-
structed four tasks around popular websites in these domains that
participants are likely to be familiar with and do repetitive work in,
including UberEats, Amazon, GoodRx, and Ticketmaster. Each task
involves using DiLogics to create a web automation program that
inputs a list of requests to the target website (e.g. food orders with
different restaurants and dishes) and fulfills the specifications (e.g.
order side, remove ingredient). We limited the number of requests
to 10 for each task to standardize the difficulty.

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

We compose the content of the task input data files following
guidance from a dataset of more than 50,000 natural language com-
mands to describe GUI actions on web elements [52]. The dataset
summarizes common categories of language phenomena to express
UI action goals in English. The dataset also reveals that many lan-
guage commands collected from crowd workers go beyond ordinal
or visual reasoning (e.g. “click the top-most article”) and use seman-
tic reasoning to describe the goal and target of the GUI actions (e.g.
“change website language” -> a clickable boxwith text “English”) [52].
Following these outlines, our data files utilize five commonly classi-
fied language phenomena (Relational Reasoning, Substring Match,
Paraphrase, Goal Description, and Image Target) [52] to describe
the task specifications. We structured each data file to contain at
least 5 diverse steps to maintain the same level of complexity and
effort for demonstration. We provide the task input data files so par-
ticipants can focus on experiencing the full features (e.g. condition
failure, new demonstration) of DiLogics within the time constraint
of the lab study. Therefore, we didn’t let participants specify task
input as their instructions may not encompass all DiLogics use
cases. Please see the appendix for the specification of each task
(Appendix, Fig.7).

6.3 Results
6.3.1 Time and Accuracy. The user study recorded 40 task comple-
tions in total (10 participants x 4 tasks). Table 1 displays analysis for
each task, including the average and standard deviation of comple-
tion time (in minute:second), task accuracy, and number of attempts
to complete this task. Task accuracy is based on each row, deemed as
one request (e.g. one food order with multiple specifications). Task
accuracy is defined as the percentage of data rows that perfectly
satisfied the specification after UI automation (e.g. selecting all the
correct options in a food order). If users record a demonstration
incorrectly, and the system fails to generalize this step in another
data row without the user’s repair, that data row is counted as incor-
rect. The overall average duration to complete a task is 08:01, and
the overall average task accuracy is 91.2%. In 29 of the 40 recorded
task completions during the study, participants created automation
programs that perfectly satisfied all the specifications in the input
files. However, there are cases when users’ demonstration fails to
generate a program due to human error (e.g. misclick, double click,
unfamiliar with task website), reflected in the number of attempts.
But errors and retries become less frequent as users learn the tool.

Since our study does not compare DiLogics’ approach to a base-
line, we keep the task order consistent for every participant and
did not conduct with-participant comparisons. However, we do
observe participants requiring more attempts and longer time to
complete task 1, indicating a learning curve. Some participants also
noted that a “high level of attention” (P9) is required at the start
of the study to “be careful about the order of the clicks” (P7, P9).
However, after completing four tasks, participants rated themselves
as successful in accomplishing each task on a seven-point Likert
scale (mean=5.9, SD=0.74, 7 is very successful, Fig.6). Participants
also thought they did not need to work very hard to achieve the
performance (mean=5.4, SD=1.26, 7 is no hard effort at all).

Task Time
(mm:ss) Accuracy # of

Attempts

1-UberEats 08:53 (02:17) 88.9% (16.6%) 1.8 (0.79)
2-Amazon 07:32 (02:54) 100% (0.00%) 1.6 (0.52)
3-GoodRx 08:33 (02:21) 94.0% (8.43%) 1.7 (0.48)
4-Ticketmaster 07:06 (02:33) 82.0% (31.6%) 1.5 (0.53)

Table 1: User study results expressed in average (SD) format.

6.3.2 Effectiveness and Usability. The participants also rated DiLog-
ics’ ease of use and efficiency from “1 - very negative” to “7 - very
positive”, detailed in Fig.6. They found their experience positive
when using DiLogics to semantically search for content (mean=5.7,
SD=0.82), recording UI demonstration for a step (mean=6.2, SD=0.42),
and specifying logical intent for different specifications (mean=6.1,
SD=0.57). Participants commented that DiLogics is helpful (P4, P5,
P8), interesting (P1, P5, P7), and effective for handling tasks with
batch requests (P3, P5, P8). P5 believed that DiLogics is “good for
repetitive tasks, [where] humanmight misclick or select wrong content
due to large load [of requests].” The workflow from manual demon-
stration, to semi-automation, and eventually full-automation was
also thought to be intuitive, keeping the human in the loop to aid
the system’s learning process (P1, P4, P5, P7, P8). P4 commented
that DiLogics is “very intuitive, [with] easy to follow instructions,
only takes two trial runs and [DiLogics] knows how to do the rest.”
Six out of ten participants noted that DiLogics is powerful at infor-
mation searching and interpretation, automating UI steps across
different conditions. P9 expressed that “semantic matching works
for...websites [that] have different layout and structure.” Overall, par-
ticipants recognized the system’s ability to learn a variety of GUI
actions associated with the task specifications and to accurately
reproduce desired interactions.

6.3.3 Coordination and Error-handling. Participants found DiLog-
ics relatively easy to coordinate and straightforward, especially for
the initial demonstrations to specify program logics (P4, P5, P7).
Many participants (P2, P3, P4, P5, P8, P9) thought the interaction
with the carousel widget provided them with a sense of control
(mean=6.4, SD=0.70) and helped them understand the progress of
the task steps (mean=6.3, SD=0.95). P6 also noted that the carousel,
combined with the semantic highlight, can inform users of the web
page content, alleviating the effort of navigating and processing
the entire web page. In addition, once in automation, participants
found the execution smooth (P1, P5, P7, P9). However, during the
transitions between user demonstration and automation (i.e. semi-
automation, or system pause to demonstrate a new step), half of the
participants found themselves sometimes unsure whether it was
the users’ turn to intervene or the system’s turn to automate. There-
fore, they desired clearer guidance on the stage of automation and
turn-taking. Participants also commented that sometimes the web
macro execution response is not synchronized with the carousel
progress and table status coloring, which caused confusion (P1, P3,
P5, P6, P7). This is due to the fact that some UI actions are not
grouped into any task step. For example, users might need to click
“Add to Order” at the end of each request, but this implicit action is
not categorized in any task description. DiLogics can improve by

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 6: Survey Response. For usability (left) and trust, 1 is very negative, and 7 is very positive. For NASA-Task load index
[21] (right), 1 is very high mental demand, effort, stress, feelings of being hurried, and very unsuccessful.

representing the synthesized program with more context, visual-
izing past and future predicted actions in addition to the current
step.

In terms of error handling, participants utilized DiLogics’ error
repair techniques at every stage. Nine out of ten users edited the
input data table to rephrase segmented steps to the appropriate
detail (e.g. “lactose intolerant” to “remove dairy products”). Seven
participants rewound the carousel and re-recorded step demonstra-
tion in the event of human error (e.g. misclick or double click). In
addition, eight participants manually repaired UI action errors (e.g.
a wrong option is highlighted or selected) and four participants
paused during automation to inspect system behavior. We observed
some instances of participants noticing an error but not fixing it. In
the interview, participants expressed that the automation continued
(e.g. navigated to a different page) before they could take action to
pause and repair. P8 and P9 suggested that a redo or undo option
in the system workflow would further lower the user’s effort to
repair errors. Future works can make the error-handling interaction
more accessible (e.g. more salient and editable execution trace) and
provide more processing time or opportunities for users to react to
undesired behaviors (e.g. summary of results at the end of task).

6.3.4 Mental Effort and Trust for AI System. Overall, participants
rated relatively low mental effort (mean=5.0, SD=0.82, 7 is not men-
tally demanding at all) and very low level of stress (mean=6.3,
SD=0.82) during the study (Fig.6). Six participants rated the ini-
tial demonstration effort to be high. P7 noted that “[demonstration]
is a bit heavy as [need] to worry about clicking on something wrong,
and to be careful about order the clicks”. As the program shifts to au-
tomation, eight out of ten participants reported decreasing mental
effort. However, P5 and P8 believed the semi-automation required
the most effort, as the users needed to process and react to the
system prompts instead of doing intuitive manual work.

In terms of trust, participants reported a relatively high level of
trust when DiLogics starts executing the program in automation

(mean=5.4, SD=0.97). P4 suggested that “would trust the system with
more learning [of the tool] and familiarity of the website” while P3
mentioned that “when the automation seems correct, [they] don’t
need to watch the system.” Participants expressed that the stake of
the tasks (P2, P4) and familiarity with the input (P1, P6) are impor-
tant factors for their trust towards DiLogics. From the evaluation,
DiLogics requires low mental effort after the demonstration phase.
And the system elicits a general level of trust from the users. Re-
searchers can focus on providing more guiding feedback and trust
cues to lower mental effort and aid users’ trust.

7 DISCUSSION
7.1 Task to Program Logic Mapping
To handle diverse program logics, DiLogics creates mappings from
each task step’s natural language description to its corresponding
UI action sequence. This approach encapsulates the UI behaviors
inside a natural language label that can be easily compared and
generalized. Users define different programming logics for each
category of requests. Generalization is built upon the assumption
that steps similar in meaning will require similar actions on UI
elements with similar affordances. From the system evaluation,
participants found the task step generalizations interesting (P8),
accurate (P7), and even mind-blowing (P1) in terms of capability.
P5 notes that the demonstration process is important as “[the user]
teach[es] the system the rules to automate the steps... helpful to keep
human in the loop.” DiLogics applies the same semantic intelligence
to processing web page content. Once synthesized an automation
program, DiLogics generalizes the UI actions to the most relevant UI
elements on the current page, despite layout and content differences
from the original page user demonstrated on. P1 expressed that
they simply needed to “let the program search information on the
website [and] do series of actions”, increasing efficiency as users do
not need to spend excess time to find the same information.

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

However, one limitation to the mapping between task steps to
UI macros is that the task does not explicitly specify every required
action. For example, while users specify their dietary restriction
in the food order, they would not specify the need to click on
“Add to Order” when ordering is done, as it is implied. DiLogics
captures and automates this type of action with uniform program
logic (i.e. does not change based on input) via demonstration. But
participants sometimes lose track of the progress as these actions
are not represented in the input data table nor the step carousel.
Therefore, more signals of system state and current action could be
added to improve usability.

7.2 Neurosymbolic Web Automation
Web automation tasks often involve the repetition of GUI actions
following certain rules on the website DOM or input data structure.
In symbolic systems, users have a high degree of control to define
the rules based on demonstration or programming instructions, if
they acquire tool and/or programming expertise [20, 32, 53]. While
existing tools can establish symbolic patterns based on UI element
properties and web page structures [4, 12], they do not possess the
task understanding of the input data nor web page content. With
an increasing volume and diversity of content on the web, symbolic
program constructions are limited as the conditions do not apply
to the content semantics and do not match the abstraction level
of user intent. Recent advancement of LLMs leads to a rising need
for high-level system understanding to provide an easier method
for users to describe their intent in less specific ways that do not
require programming expertise. LLM-powered tools allow intent
expression using natural language and can translate abstract intents
into executable steps on the web-based on powerful content under-
standing. But current LLM tools offer limited control of the program
construction and execution [1, 11]. Users can only specify intent
using prompts and examples, making these tools more similar to
an API that responds to individual requests rather than large-scale
data. In addition, pure statistical-learning-based tools can be incon-
sistent in output generation, but current tools often provide very
limited or no error-handling and refinement techniques.

Neurosymbolic systems offer a hybrid model that combines sym-
bolic inferences and similarity-based predictions. One main contri-
bution of DiLogics is enabling web automation programs to gener-
alize execution steps based on both symbolic and semantic learning.
Mappings are generated between symbolic GUI executions and
task semantics to bridge high-level user intent and lower-level
web macros. Compared to LLM-based web automation tools such
as Adept AI, or Taxy AI [1, 11], DiLogics provides an end-to-end
pipeline from input data parsing to refinement and error repairs,
making it a more complete and robust workflow for the down-
stream tasks of web automation. The implementation of DiLogics
can adapt to evolving LLM models to harness the power of task
and content understanding as the neurosymbolic approach to UI
automation is generalizable.

We argue that this neurosymbolic model can be applied to other
automation tasks that involve the semantic understanding of con-
tent, such as information organization, content transformation, and
generative creation. Future works can explore how to ground sta-
tistical learning models, such as LLMs, in specific task frameworks

(i.e. web automation) with general rules (i.e. structural inference
on DOM), and how to provide users agency to tailor the process on
top of editing prompts.

7.3 System Scope and Limitations
The novelty of DiLogics’ design is in leveraging semantic under-
standing to enhance UI automation through a mapping between
natural language step categories and web macros. This mapping
can be established for any web automation tasks where task de-
scriptions can be connected to symbolic UI interactions. Addition-
ally, the set of interactions for data segmentation, programming
logic demonstration, refinement, and error repair can be general-
ized to any other PBD systems. While the system is implemented
with an existing program synthesizer [20] and off-the-shelf NLP
models [22, 55], DiLogics is not dependent on any specific tool or
model. For example, DiLogics could adopt the latest iteration of
LLM to increase the system’s semantic understanding capability
and content-matching accuracy.

However, the current implementation of DiLogics is limited to
understanding text web content and does not support other modal-
ities such as images. This is because the system extracts text-to-
element relationships from theweb page’s HTML to perform seman-
tic search and UI automation. This restriction means that DiLogics
cannot infer meaning from images or pure graphical UI (e.g. icons
without alt-text), even though human users might express intent in
relation to visual information [52].

Despite its generalizability to automate on websites with differ-
ent DOM structures, DiLogics requires structured input data. The
synthesized automation program needs to form a repeatable in-
struction set (i.e. a loopy program) grounded by symbolic structure
on the input (i.e. consistent number of data columns and column
ordering). This means that the input data cannot be completely un-
structured like a natural language paragraph. In addition, DiLogics
requires two iterations of demonstrations to form an automation
program; users have to spend some manual effort to perform the
first two rows at the beginning of the task. This means DiLogics
cannot perform one-shot automation with a prompt, as can be done
by LLM-based automation tools [1, 11].

Finally, while DiLogics’ step to UI actions mapping enables gener-
alizability for similar task semantics, these mappings are restricted
to one-to-one relationships. This was based on the assumption de-
rived from our informal analysis of web UI and content, where for
GUI tasks under the same web domain, the same semantic task
is fulfilled by similar UI interactions. For tasks that span multiple
domains and require different UI actions for the same semantic
task, DiLogics could lead to high demonstration effort depending
on the variety of UI actions and the task size. The main barrier to
one-to-many mappings is the analysis of the webpage state and
content. DiLogics is unable to support steps that require updating
the system state and repeatedly performing actions to satisfy speci-
fications. For example, a task step to “remove all lactose intolerant
option” might map to a sequence of actions to search and check “no
cheese”, but DiLogics will deem the condition fulfilled after the UI
actions are executed. This means that the system will not iterate
through the web content, identify the state of the condition, and
find all applicable options to remove (e.g. also need to select “No

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

milk”), as it requires holistic semantic understanding of the task
requirement and the UI states.

As a result of these limitations, we scope DiLogics’ capability to
handle tasks where the input data is structured, the target website
contains text content describing UI elements (e.g. text button, check-
box with text), and the specifications do not require repeated check
on website state to fulfill. In the next section, we provide potential
directions for future work to overcome these identified hurdles. We
also aim to highlight insights in DiLogics’ neurosymbolic system
design and implementation, as well as the interaction techniques
to facilitate continuous human-AI collaboration.

7.4 Future Work
Based on user feedback from the system evaluation, we provide
several directions to aid future system designs. First, as discussed in
DiLogics’ limitations, the semantic task understanding is limited to
textual web page content. Future works can leverage multi-modal
neural networks, such as CLIP [54], to understand the website’s vi-
sual content as well, expanding the capability to handle user intents
that involve visual reasoning (e.g. click on the dish with fish on the
image). A parallel approach is to construct a knowledge graph of the
website content, which could connect different contents in the form
of text, image, video, and/or audio [36]. This can generate a holistic
view of the web page and even relate different pages, increasing
information searching capabilities during the automation. Future
works could potentially achieve this using content summarization
techniques to transform and embed all types of content in the same
space and compare similarities. The additional high-level under-
standing of the web page content and the task goal can potentially
expand the existing one-to-one task-UI mapping to a one-to-many
relationship, enhancing generalizability.

Another limitation of DiLogics is that the automation can not
perform logics that require constant analysis of the website state
(e.g. check if all lactose intolerant options are chosen). Future sys-
tems can constantly analyze the website’s state and task completion
status after every UI action or DOM change. This requires storing
the state of the website and understanding the status of UI elements
at a semantic level (e.g. the “No cheese” option is selected, but the
condition is not fulfilled as “No milk” is not selected).

Finally, to further reduce user effort and make web automation
programs easier and more accessible to create, future works can
potentially derive patterns of execution based on previous task
completion. Since every task generates an automation program,
there might exist many overlaps in steps and programming logics
for tasks in the same domain. Researchers can leverage the history
of these completed tasks to make predictions on a new task. If the
task can be processed through past similar tasks, the user might
not even need to perform initial demonstrations to start program
generation; the past tasks may already be capable of predicting the
execution of the current one.

8 CONCLUSION
To support creating web automation with diverse specifications,
we designed and developed DiLogics, a PBD tool that assists users
in segmenting task requests and synthesizes programs based on
user demonstration of example steps. The steps are mapped to

sequences of UI actions and can be generalized using both sym-
bolic inferences and semantic similarity via statistical models. In a
system evaluation, we found that participants can effectively use
DiLogics to generate UI automation scripts and complete tasks
with high accuracy. We propose a generalizable neurosymbolic
approach that combines the advantages of rule-based systems and
neural networks. Our work can offer insights into future system
and interaction designs that leverage semantic understanding in
traditionally symbolic automation systems.

ACKNOWLEDGMENTS
We thank all our participants and reviewers. This research was sup-
ported in part by the National Sciences and Engineering Research
Council of Canada (NSERC) under Grant IRCPJ 545100 - 18, and the
National Science Foundation under grant numbers CCF-2236233
and CCF-2123654.

REFERENCES
[1] 2023. Adept AI. https://www.adept.ai/blog/act-1 Accessed: March, 2023.
[2] 2023. Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/ Ac-

cessed: March, 2023.
[3] 2023. Help Needed with Keyword Assertion. https://forum.imacros.net/

viewtopic.php?f=7&t=30990&sid=117ef7144580822f4982137e21eddfc2 Accessed:
March, 2023.

[4] 2023. iMacro. https://www.progress.com/imacros Accessed: March, 2023.
[5] 2023. iMacro Forum. https://forum.imacros.net/ Accessed: March, 2023.
[6] 2023. iMacros Script to Extract Specific Text From Static Posi-

tion. https://forum.imacros.net/viewtopic.php?f=7&t=28432&sid=
01bf0edf807fd3d4bb507a35b87155ad Accessed: March, 2023.

[7] 2023. iMcaros Forum. https://forum.imacros.net/ Accessed: March, 2023.
[8] 2023. Programatically interact with the IE browser to fill in forms and navigate

etc. https://stackoverflow.com/questions/8438782/programatically-interact-
with-the-ie-browser-to-fill-in-forms-and-navigate-etc Accessed: March, 2023.

[9] 2023. Reddit API. https://www.reddit.com/dev/api/ Accessed: March, 2023.
[10] 2023. Stack Overflow. https://stackoverflow.com/search?q=%5Bselenium%5D+

semantic Accessed: March, 2023.
[11] 2023. Taxy AI. https://taxy.ai/ Accessed: March, 2023.
[12] 2023. UiPath. https://www.uipath.com/ Accessed: March, 2023.
[13] 2023. UiPath Forum. https://forum.uipath.com/ Accessed: March, 2023.
[14] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul

Jung, Mary Swift, and William Taysom. 2007. Plow: A collaborative task learning
agent. In AAAI, Vol. 7. 1514–1519.

[15] A Blackwell. 2000. YourWish is My Command: Giving Users the Power to Instruct
their Software, chapter SWYN: a visual representation for regular expressions.
M. Kaufmann (2000), 245–270.

[16] Alan F Blackwell. 2001. SWYN: A visual representation for regular expressions.
In Your wish is my command. Elsevier, 245–XIII.

[17] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[18] Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani,
and Isil Dillig. 2021. Web question answering with neurosymbolic program
synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 328–343.

[19] Yan Chen and Tovi Grossman. 2021. Umitation: Retargeting UI Behavior Examples
forWebsite Design. In The 34th Annual ACM Symposium on User Interface Software
and Technology. 922–935.

[20] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022.
WebRobot: Web Robotic Process Automation using Interactive Programming-by-
Demonstration. arXiv preprint arXiv:2203.09993 (2022).

[21] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances
in Psychology, Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[22] Matthew Honnibal, Ines Montani, Matthew Honnibal, Henning Peters, Sofie Van
Landeghem,Maxim Samsonov, JimGeovedi, Jim Regan, GyörgyOrosz, Søren Lind
Kristiansen, Paul O’Leary McCann, Duygu Altinok, Roman, Grégory Howard,
Sam Bozek, Explosion Bot, Mark Amery, Wannaphong Phatthiyaphaibun,

https://www.adept.ai/blog/act-1
http://www.crummy.com/software/BeautifulSoup/
https://forum.imacros.net/viewtopic.php?f=7&t=30990&sid=117ef7144580822f4982137e21eddfc2
https://forum.imacros.net/viewtopic.php?f=7&t=30990&sid=117ef7144580822f4982137e21eddfc2
https://www.progress.com/imacros
https://forum.imacros.net/
https://forum.imacros.net/viewtopic.php?f=7&t=28432&sid=01bf0edf807fd3d4bb507a35b87155ad
https://forum.imacros.net/viewtopic.php?f=7&t=28432&sid=01bf0edf807fd3d4bb507a35b87155ad
https://forum.imacros.net/
https://stackoverflow.com/questions/8438782/programatically-interact-with-the-ie-browser-to-fill-in-forms-and-navigate-etc
https://stackoverflow.com/questions/8438782/programatically-interact-with-the-ie-browser-to-fill-in-forms-and-navigate-etc
https://www.reddit.com/dev/api/
https://stackoverflow.com/search?q=%5Bselenium%5D+semantic
https://stackoverflow.com/search?q=%5Bselenium%5D+semantic
https://taxy.ai/
https://www.uipath.com/
https://forum.uipath.com/
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kevin Pu, et al.

Leif Uwe Vogelsang, Björn Böing, Pradeep Kumar Tippa, jeannefukumaru,
GregDubbin, Vadim Mazaev, Ramanan Balakrishnan, Jens Dahl Møllerhøj, wb-
wseeker, Magnus Burton, thomasO, and Avadh Patel. 2019. explosion/spaCy:
v2.1.7: Improved evaluation, better language factories and bug fixes. https:
//doi.org/10.5281/zenodo.3358113

[23] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh,
Pennsylvania, USA) (CHI ’99). Association for Computing Machinery, New York,
NY, USA, 159–166. https://doi.org/10.1145/302979.303030

[24] Rebecca Krosnick and Steve Oney. 2021. Understanding the Challenges and Needs
of Programmers Writing Web Automation Scripts. In 2021 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–9.

[25] Rebecca Krosnick and Steve Oney. 2022. ParamMacros: Creating UI Automation
Leveraging End-User Natural Language Parameterization. In 2022 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). 1–10.
https://doi.org/10.1109/VL/HCC53370.2022.9833005

[26] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. 1993. Watch what I
do: programming by demonstration. MIT press.

[27] David Kurlander and Steven Feiner. 1992. A history-based macro by example
system. In Proceedings of the 5th annual ACM symposium on User interface software
and technology. 99–106.

[28] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. 2003. Pro-
gramming by demonstration using version space algebra. Machine Learning 53,
1 (2003), 111–156.

[29] Tessa A Lau, Pedro M Domingos, and Daniel S Weld. 2000. Version Space Algebra
and its Application to Programming by Demonstration.. In ICML. Citeseer, 527–
534.

[30] Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 542–553.

[31] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–17.

[32] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
automating & sharing how-to knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 1719–1728.

[33] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s
what I did: Sharing and reusing web activity with ActionShot. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 723–732.

[34] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers.
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology (Virtual Event, USA) (UIST ’20). Association for Computing
Machinery, New York, NY, USA, 1094–1107. https://doi.org/10.1145/3379337.
3415820

[35] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Wanling Ding, Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descriptions in Programming by
Demonstration Using Natural Language Instructions. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 105–114.
https://doi.org/10.1109/VLHCC.2018.8506506

[36] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/3411764.3445049

[37] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomMMitchell,
and Brad A Myers. 2019. Pumice: A multi-modal agent that learns concepts and
conditionals from natural language and demonstrations. In Proceedings of the
32nd annual ACM symposium on user interface software and technology. 577–589.

[38] Yang Li, Jiacong He, Xiaoxia Zhou, Yuan Zhang, and Jason Baldridge. 2020.
Mapping Natural Language Instructions to Mobile UI Action Sequences. ArXiv
abs/2005.03776 (2020).

[39] Henry Lieberman. 1994. A user interface for knowledge acquisition from video.
In AAAI. Citeseer, 527–534.

[40] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A Lau. 2009.
End-user programming of mashups with vegemite. In Proceedings of the 14th
international conference on Intelligent user interfaces. 97–106.

[41] Greg Little, Tessa A Lau, Allen Cypher, James Lin, Eben M Haber, and Eser
Kandogan. 2007. Koala: capture, share, automate, personalize business processes
on the web. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 943–946.

[42] Karthik Mahadevan, Yan Chen, Maya Cakmak, Anthony Tang, and Tovi Gross-
man. 2022. Mimic: In-Situ Recording and Re-Use of Demonstrations to Support
Robot Teleoperation. In Proceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology. 1–13.

[43] David L Maulsby, Ian H Witten, and Kenneth A Kittlitz. 1989. Metamouse:
Specifying graphical procedures by example. ACM SIGGRAPH Computer Graphics

23, 3 (1989), 127–136.
[44] Dan H Mo and Ian H Witten. 1992. Learning text editing tasks from examples: a

procedural approach. Behaviour & Information Technology 11, 1 (1992), 32–45.
[45] Francesmary Modugno and Brad A Myers. 1994. Pursuit: Visual programming in

a visual domain. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT OF COMPUTER SCIENCE.

[46] Brad AMyers, Dario A Giuse, Roger B Dannenberg, Brad Vander Zanden, David S
Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. 1995. GARNET
comprehensive support for graphical, highly interactive user interfaces. In
Readings in Human–Computer Interaction. Elsevier, 357–371.

[47] Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. reCode:
A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code
by Example. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 258–269.

[48] Jeffrey Nichols and Tessa Lau. 2008. Mobilization by demonstration: using traces
to re-author existing web sites. In Proceedings of the 13th international conference
on Intelligent user interfaces. 149–158.

[49] Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

[50] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. Designscape:
Design with interactive layout suggestions. In Proceedings of the 33rd annual
ACM conference on human factors in computing systems. 1221–1224.

[51] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855 (2016).

[52] Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and
Percy Liang. 2018. Mapping Natural Language Commands to Web Elements.
arXiv:1808.09132 [cs.CL]

[53] Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman.
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web
Automation Programs. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Association
for Computing Machinery, New York, NY, USA, Article 63, 16 pages. https:
//doi.org/10.1145/3526113.3545691

[54] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. arXiv:2103.00020 [cs.CV]

[55] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[56] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Min-
fan Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020. VASTA: a vision and
language-assisted smartphone task automation system. In Proceedings of the 25th
international conference on intelligent user interfaces. 22–32.

[57] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang.
2017. World of Bits: An Open-Domain Platform for Web-Based Agents. In
Proceedings of the 34th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.).
PMLR, 3135–3144. https://proceedings.mlr.press/v70/shi17a.html

[58] Atsushi Sugiura and Yoshiyuki Koseki. 1998. Internet scrapbook: automating
web browsing tasks by demonstration. In Proceedings of the 11th annual ACM
symposium on User interface software and technology. 9–18.

[59] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives
through High-Level Design Constraints. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–13.

[60] Priyan Vaithilingam and Philip J Guo. 2019. Bespoke: Interactively synthesizing
custom GUIs from command-line applications by demonstration. In Proceedings
of the 32nd annual ACM symposium on user interface software and technology.
563–576.

[61] Bryan Wang, Gang Li, and Yang Li. 2022. Enabling Conversational Interaction
with Mobile UI using Large Language Models. Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (2022).

[62] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2Words: Automatic Mobile UI Summarization with Multimodal
Learning. The 34th Annual ACM Symposium on User Interface Software and
Technology (2021).

[63] Andrew J Werth and Brad A Myers. 1993. Tourmaline (abstract) macrostyles by
example. In Proceedings of the INTERACT’93 and CHI’93 Conference on Human
Factors in Computing Systems. 532.

[64] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

[65] Nanxuan Zhao, Nam Wook Kim, Laura Mariah Herman, Hanspeter Pfister, Ryn-
son WH Lau, Jose Echevarria, and Zoya Bylinskii. 2020. Iconate: Automatic
compound icon generation and ideation. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. 1–13.

https://doi.org/10.5281/zenodo.3358113
https://doi.org/10.5281/zenodo.3358113
https://doi.org/10.1145/302979.303030
https://doi.org/10.1109/VL/HCC53370.2022.9833005
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1145/3411764.3445049
https://arxiv.org/abs/1808.09132
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691
https://arxiv.org/abs/2103.00020
https://proceedings.mlr.press/v70/shi17a.html

DiLogics: Creating Web Automation Programs With Diverse Logics UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

A APPENDIX
Task Description Website Example

1 UberEats (Dining)

Task Description:
Order food from different
restaurants with various dietary
restrictions, side dish choices
and other customization.

Example Request:
“Restaurant”: [“Brunch Alley”],
“Food”: [“Greek Omelette”],
“Memo”: [“lactose intolerant option,
choose whole wheat, and add tea”]

Order food with customization

2 Amazon (Shopping)

Task Description:
Add items to order based on
shopping list with different
selections on size, color,
style, etc.

Example Request:
“Query”: [“merchandise”],
“Product”: [“water bottle”],
“Condition”: [“choose stainless steel style,
pick bright color if there is one, add gift”] Shop item with selected color and material

3 GoodRx (Healthcare)

Task Description:
Compare drug prices and
find coupons with given list of
prescription selections

Example Request:
“Drug”: [“Lipitor”],
“Prescription”: [“choose brand one,
pick 10mg dosage, have 60 tablets
pack, use Walmart pharmacy”]

Find selected medicine coupon

4 Ticketmaster (Entertainment)

Task Description:
Book event based on provided
category and requirements like
number of tickets, preference for
seating, etc.

Example Request:
“Type”: [“concert”],
“Event”: [“Elton John”],
“Specification”: [“select standard
ticket, and also pick senior ticket,get
2 tickets, and select side-view seating”]

Book event with preferred seating

Figure 7: User study task descriptions with example web page UI.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Automation
	2.2 Specifying Diverse Programming Logics
	2.3 Programming by Demonstration

	3 Background: WebRobot System
	4 Formative Study and Design Goals
	4.1 Online Web Automation Requests
	4.2 Website UI and Content Analysis
	4.3 Design goals

	5 DiLogics
	5.1 The DiLogics User Experience
	5.2 DiLogics' Design Rationale and Iteration
	5.3 Design and Implementation

	6 System Evaluation
	6.1 Study Design
	6.2 Tasks
	6.3 Results

	7 Discussion
	7.1 Task to Program Logic Mapping
	7.2 Neurosymbolic Web Automation
	7.3 System Scope and Limitations
	7.4 Future Work

	8 Conclusion
	Acknowledgments
	References
	A Appendix

